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Al~t~et--This paper studies the rheological behavior of a dilute suspension of spherical microcapsules, i.e. 
spherical thin elastic membranes filled with an incompressible liquid. Previous results obtained for the 
motion of such capsules freely suspended in a simple shear flow are first extended to general linear shear flows. 
Then the stresslet term in the external flow is computed to order ~2 where ~, assumed to be small with 
respect to unity, is the ratio of viscous to elastic forces acting on the particle. The resulting constitutive 
equation is of the viscoelastic type and is similar to the one obtained for liquid droplets. It predicts that the 
microcapsule suspension exhibits a shear dependent viscosity and normal stress effects. The exact 
dependency of these phenomena on the microscopic parameters of the suspension is explicitly provided by 
the model. 

I. INTRODUCTION 

The rheological behaviour of dilute suspensions of deformable particles has been extensively 
studied, in particular when the corpuscles are elastic solids, liquid droplets or flexible threads. 
There is however a class of particles which have seldom been considered: capsules. In our 
terminology a capsule (or a microcapsule if it is very small) consists of a thin elastic membrane 
enclosing a viscous liquid. Such particles are encountered in nature or in industrial processes. 
For example, depending on their properties, they can represent red blood cells, emulsion 
droplets stabilized by interracial polymerization, artificial capsules such as those presently 
studied for energy storage or for retarded diffusion. Because of their particular structure, 
capsules suspended in the flow of a viscous fluid will deform, but their motion is very specific. 
Indeed, their internal medium behaves like that of a liquid droplet, whereas their elastic 
interface deforms as a solid. Consequently, the rheology of a suspension of microcapsules 
cannot be directly inferred from presently existing models of other types of suspensions 

(emulsions, elastic spheres, etc.). 
This has been recognized by Brennen (1975) who computed the apparent shear viscosity of a 

suspension of spherical microcapsules as a function of concentration and for rheologically 
different interfaces: solid, liquid, viscous or plastic membranes. The most interesting result of 
this study, is the prediction of an increased viscosity with concentration which depends 
strongly on the properties of the capsules. However, recent experimental results obtained by 
Bredimas (1980) on dilute interfacially polymerized emulsions, show clearly that the suspension 
definitely exhibits a shear thinning viscosity which also depends strongly on the deformability 
of the capsules. Obviously such a phenomenon cannot be predicted by Brennen's model which 
is limited to spherical particles undergoing negligible shape alterations. Consequently, it is of 
interest to conceive a model which will link the bulk properties of a suspension of micro- 
capsules to their microrheological parameters, and which will take into consideration their 

deformation due to viscous forces. In order to simplify the problem, only dilute suspensions will 
be considered, thus eliminating interaction effects between particles. 

Following Batchelor's (1970) theory of suspensions, the first step consists in determining the 
motion of a capsule suspended in a viscous shear flow. In general such a problem is quite 
difficult to solve. Firstly, the position of the interface is unknown, titus making the problem 
very non-linear. Secondly, the deformations of the membrane are large in general and the 

corresponding non-linear theory must be introduced. Finally, a double formulation must be 
used: Eulerian for the fluid particles, Lagrangian for the solid material points. However, as 
shown by Barthes-Biesel (1980) the problem is amenable to solution in the particular case when 
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the capsule is initially spherical, the membrane purely elastic, both the internal liquid and the 
suspending fluid are Newtonian and incompressible, and when the deformations of the particles 
are moderate. Then a regular perturbation solution can be found where the small parameter, e, 
is the ratio of viscous to elastic forces. Barthes-Biesel determined the deformation of the 
capsule up to 0(e2), when the externally imposed flow is a linear simple shear. In the present 
paper, we consider a dilute suspension of such microcapsules and we show how the above 
results can be generalized to any linear shear flow. Then, the stresslet term contributing to the 
bulk stress of the suspension is computed to 0(~ 2) included. The resulting constitutive equation 
predicts a non-Newtonian viscosity and normal stress effects. 

2. FORMULATION OF THE PROBLEM 

The complete formulation of the problem has been given by Barthes-Biesel (1980) (Ref. A 
thereafter). In this section we shall only recall the essential equations and the solution 
technique. The details can be found in Ref. A. 

The suspending medium is an incompressible Newtonian fluid of viscosity/~. It is subjected 
to a bulk linear shear flow given by 

v ~ = e . x _ + f l . x .  

_e and II are respectively the strain rate and vorticity dyads. They are constant and have a 
characteristic magnitude G. 

The suspended capsule is a sphere of radius ro in its undeformed state. It is filled with an 
incompressible Newtonian liquid of viscosity A#. The membrane is thin of thickness h 
(h/ro ~ 1), its bending resistance is negligible, but the material has otherwise arbitrary elastic 
properties, defined by the strain energy function W(I1, I2, I3), and by a general elastic modulus 
E. All quantities are non dimensionalized, distances by r0, time by G -l, stresses in the fluids by 
ttG, tensions in the membrane by Eh. Consequently the problem depends on three dimension- 
less parameters: 

_ IzGro pGro 2 
•, e E h '  Re= # 

Assuming that the particle Reynolds number Re is very small, all inertia effects are neglected so 
that the fluid motions are described by the Stokes equations with respect to an Eulerian frame 
of reference (~) moving with the center of mass of the particle (see figure 1). 

V2/) = Vp x ~ D, 

• ~ V2/) * = V p *  X E D*, 

3 

N D 

_e~ . D * - ~ ~  

~--S 
Figure. 1. Definition of the Eulerian frame , '~  
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where D*, D, S denote respectively the interior, the exterior and the boundary of the particle. 
The thickness of the membrane is neglected. The associated boundary conditions for the 
velocity are 

_v -> (_e + _tl) . _x as (_x._x)l/2~oo, [2.1] 

v=v_*=v  m as _xES, [2.2] 

where _v m is the velocity of the membrane. 
Finally, the membrane must be in dynamic equilibrium under the viscous load q due to fluid 

stresses. 

q = (¢ - ¢*)._N, 

where ¢ and q* are the viscous stress dyads in the external and in the internal liquids, _N is the 
unit outer normal vector to the deformed membrane. 

This latter equilibrium condition balances the viscous forces with the elastic tensions in the 
membrane. The tensions are related to the local deformations, which can be expressed in terms 
of the displacement of material points, from which the deformed profile equation is obtained. The 
theory of large elastic deformations of membrane shells, as formulated by Green & Adkins 
(1960), is now summarized. Local curvilinear coordinates 01 and 02 are first defined and then 
used to label the different material points. Correspondingly the position of a point of the middle 
surface of the membrane is _a (0 ~, 0 2) before deformation and _A (0 ~, 0 2) after deformation. We 
adopt here the classical notation where Greek indices take the values 1 and 2, where summation 
on repeated indices is implicit and where ,a denotes derivation with respect to 0% Then the 
metric tensors of the surface before and after deformation are given by: 

a~a = _a,~ • _a,a, A~a = _A,~ • _A a, 

with contravariant components defined in the usual fashion. 
The strain invariants for an incompressible material are defined by 

I I = a ' ~ A , , ~ + k  2, I 2 = a ~ t ~ A ' + k  -2, I 3 = I ,  

where k is the thickness ratio between the deformed and undeformed states. The constitutive 
equation of the membrane material relates the tensions r ~ to the deformations. In its most general 
form this relationship reads as 

with 

"r ~ = k{Oa ~ + x~ D ~ - k2[q b + ~(Ii - k 2 ) ] A ~ } ,  

D~o = k2a~O + (anna ~ _ a,SaOV)A~. 

The material coefficients • and • are obtained from the strain energy function W: 

OW OW 
• =2Tf i,  ,=2  o-g  

Finally the equilibrium of the membrane is written as 

r~,~ + F;~ r "~ + F~ r ~ + ~q • _A,~ = O, 

z~ B ~  + ~q • N = O, 
MF VoL 7, No. 5--B 
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where F~a, the Christoffel symbols of the deformed surface, and B~a, the second fundamental 
form, are given by 

I 
F.~ = ~ A"" (A~m,~, + A,~,,a - A~:,.,), 

B~ = _N. _A.,~.p. 

Obviously, as such, these equations are not amenable in general to an analytical solution even 
when the initial geometry is spherical. However, in the case when e is much smaller than unity, 
a regular perturbation solution can be found. As shown in Ref. A, the technique consists in 
expanding all quantities in terms of e, and in solving the linearized equations by successive 

approximations. 
In expanded form, the deformed position of membrane points, the equation of the surface, 

and the velocities can be written as 

(1) .(2) 
A = a +EA+ e':_A + O(e'), 

r = l + e f + e 2 +O(e3), [2.3] 

(0) (t) (2) 
v = _v +e_v +e 2_v +0(e3). 

Furthermore, all quantities are evaluated on the initial sphere. Consequently, the continuity 
of velocity condition becomes: 

L- J r = l  _ r = l  - 

r = ,  - - 

[2.4] 

with a similar equation for v*. 
For each iteration, the value of the membrane velocity is known. Consequently, the flow 

fields in D and D* are uniquely determined from the velocity boundary conditions [2.1] and 
[2.2], and the load acting on the membrane follows readily. 

Then the linearized membrane equations are solved for the new displacement vector. Owing 
to the Lagrangian formulation of the solid problem, the displacement is naturally expressed in 
terms of the coordinates of the material points before deformation occurs. It is obvious though, 
that this displacement consists of a solid body rotation (due to the vorticity of the flow) 
generating no deformation, and of pure strain due to the viscous load. Since the membrane is 
isotropic in the stress-free state, the solid body rotation of the points can be eliminated, and the 
displacement can be expressed in terms of the undeformed Eulerian coordinates, y in (~), of the 
membrane points (see figure 2). The velocity of' the membrane points is then obtained by 
superposing the displacement constant in space and the rotational motion. Then, if _x represents 
the components of A in (~) 

(1) ,,(2) 
x = y + E_A (y) + ~-A(y) + 0(e3), [2.5] 
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a 

m, 

Figure 2. y is the Eulerian initial coordinate of a material point. After deformation, this point is a position ~ at 
time t. r = X/(_x • _x). 

d ~_y= ~ y, [2.6] 

d d (5) 
_/-)m(_x)i v " y + ~  ( / ~ ( _ y ) + E 2 ~ - T A ( y ) + O ( ~ 3 ) ,  [2.7] 

where _~ is the rotation rate of the membrane. 

3. T I l E  TWO F I R S T  I T E R A T I O N S  

A general solution of Stokes equations has been given by Lamb (1932) in terms of 
spherical harmonics. In particular, with respect to (~), the velocity field in the external fluid can 
be written as: 

_v=(_e+_a)._x+ S._x+_x r.  T-~8-_x_x 

+ 420"/r9 ~_S(iv) -2-8-  r2 Ttiv)).(x_x_x_)_945xr.(S --~-rr- (i~)-r218_T(i~)) • (x_xx)_x +higher order terms, 

[3.1] 

r 2 = _ x  "_x, x E D  

where T, _S, are symmetric, traceless second order tensors; T ('v), S_ ('~) are symmetric, traceless 
fourth order tensors. 

The higher order terms have not been included since they do not enter the present problem. In 
fact, we are only interested in T, the stresslet term, which alone contributes to the constitutive 
equation as was shown by Batchelor. But in order to compute T up to a given order in e, the 
higher order tensors of all lower orders in ~ must first be determined. 

The 0(1) membrane velocity corresponds to a solid body rotation with the same vorticity as 
the undisturbed flow: 

(o) 
v m =1).  y. [3.2] 

(o) 
Using expression [3.1] for v, boundary condition [2.4], and the fact that to this order of 
approximation _x = y, yield the following expressions for the 0(1) spherical harmonics appearing 

(o) 
in _v: 

(o) 5 <o) 1 
_T = - ~  g, _S = - ~  e, [3.3] 

all other tensors being zero. 
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Since the membrane equations have all been linearized in the perturbation procedure, and 
since we are only seeking steady state solutions, it is obvious that the 0(e) displacement will 
depend linearly on _e. By analogy with the liquid droplet problem, we deduce that the first order 
displacement is given in general with respect to (~) by: 

(1) 
A = y r ' ( J _  _K_) .  yy+ _K. y, [3.41 

where _J and _K are both symmetric second order dyads depending only on _e. _._J specifies the 
radial displacement, and must be traceless to satisfy the incompressibility of the internal fluid. 
_K measures the tangential displacement of material points, and can also be chosen traceless 
without any loss of generality. Consequently the equation of the deformed surface becomes: 

r = 1 + ex r .  J_. x + O(e2), 

(1) 
I =x_ r " ! ' x .  

The relationship between _x and y is now 

x 
- = y + e ( _ K . y - y r ' K _  . yy)  +O(e2). 

The dependence of _J and _K on _e has been determined for the particular case of a simple shear flow 
in Ref. A where it is found that when _e is given with respect to (~) by 

then 

_e tm= 1 0 , 
0 

[3.5] 

_J(SS) = -~ e(m and _K(m = ~ _e~m. 

Consequently it follows from the previous remark on linearity that both J and K are given for 
any general linear shear flow by 

25 
/ = T e ,  g = ~ - e .  

In order to deal with the next iteration, the 0(e) membrane velocity must be obtained by 
superposing the displacement [3.4] with the rotational motion [3.2]. This has been done by 
Barthes-Biesel who found that 

p" = [~. X]r=l+ e[Xr" ! "X0" _X +2_X r ' ( ! - g ) ' l ~ ' x x  

-1 ) .  K-  x + _K. 1)_. _x],=~ +0(e2). [3.6] 

,. (1) 
Substituting in [2.4], for v an expression similar to [3.1], and replacing v m by [3.6], it is possible 
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(I) 
to identify the coefficients of the spherical harmonics appearing in _v (the technique to do so 
has been presented in detail by Frankel & Acrivos 1970). Thus: 

+ sd <e  
125 = - -T -  Sd (e_. 

~ s = - l ~  sd (e_ " e_)+~ Sd (e_ " fl_), [3.71 

(~"~)  = 14 (S (i~' = - 2-~5 Sd4 (_e_e) 18 

where the symbols Sd and Sd4 represent respectively symmetric deviators of order two and 
four, defined in index notation as: 

and 

1 2 
Sd(Aii) = ~ (A o +Aii - ~ 8ij Art), 

1 
Sd4(Aiiab) = ~{Ai~ab + Aiabi + 22 other terms 

2 
- ~ [Sab(Aott + Aioi + 10 other terms) 

+ 5 other terms] 

+ 8 (~O.~a b + ~iaSbj + ~ib~ia ) (Aura m + Atralr a + Atraral)}. 

The expression for the internal velocity field is obtained in a similar fashion. It then appears 
that the membrane rotation rate is not altered but remains characterized by fl_. 

The corresponding general expression for the stress force exerted at point _x by the inner 
and outer fluids on the membrane has been given in Ref. A, where it is shown to be equal to: 

• + ~ ,  3 _ .[Sd(_e._e) 19A+16Sd(e_.f~)].y}y q=5_e y {2p*+~_e :_e+2yr  5 - - - 

+ ~ { - [ ~  Sd(e_.e_)+2Sd(e_.~_)]._y+ ~ Sd4 (_e_e).(_y_yy)}+ O(e2). 

The 0(E) term of this load is then used in the perturbed membrane deformation equations to 
obtain the new 0(62) displacement vector. The perturbation procedure linearizes the equilibrium 
deformation equations. The non-linearities appear as products of 0(E) quantities, which have 
been shown to depend on _e. Consequently, keeping in mind that the solid body rotation of the 
particle was eliminated previously, the Eulerian displacement of each point can only depend 
quadratically on _e and _fl while each term must include _e. Thus, in its most general form, the 
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displacement becomes 

l3.81 

For the case of a simple shear flow this displacement has been computed by Barthes-Biesel 
(1980). Expressed in (8) its components become: 

[3.9a] 

5941 47 
-840-30'P'ty3 2(~t;4')+(!ft60')y:y;t209~;276(y;-y;)], 

[3.9b] 

where q’ measures the non linearity of the membrane material and is defined by 

By identification between [3.9a, b] and [3.8], evaluated for a simple shear flow [3.5], the 
coefficients Ci are uniquely determined as functions of A and of the elastic properties of the 
membrane. It is found that 

Co=%, C,=-;(19A+24), C2=-y-Fp’, 

4. DETERMINATION OF THE Ok’) STRESSLET STRENGTH 

(2) 
The stresslet _T is obtained from the O(e2) boundary condition [2.4], where T is given by 

[3.1]. The first step consists in computing the membrane velocity to 0(e2), as indicated by [2.6] 
and [2.7]. Correspondingly _v’” at position 8 in naturally expressed as a function of _y, the initial 
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coordinate of the material point 

+ e2{y r .  [C~Sd(e_. 9 ) +  C2Sd(e_" e)]. (2fl_.yy + y 9 "  Y) [4.1] 

+ C3y T" Sd4(_e_e). [(3 9 "  YYY)Y + (YYY)9' Y] 

+ C4Sd(e_. 9)"  9 "  Y + C5 Sd(e_. e_). 9 "  Y + 3 C6 Sd4(e_e_). (yy~_. y)} 
+ 0(~3). 

At this order, the rotation rate of the particle may be modified. This leads to a extra term in v" 
(2) (2) 

of the type e 2 _to • y, which has not been included in [4.1], for it does not affect the value of T. 
Since v_" is to be matched with the fluid velocity at _x, it must be expressed in terms of x_/r. 

The relation between _x and y, given by [2.5], [3.4], [3.8], can be inverted by successive 
approximations. 

- - - - -  " e • Y= r ~-2  -e r r - 

2,x_x_" [ x x 
+, C, Sd(e.n).r+CsSd(e_ .e).r+ c, sa,(e_e_).k r3 ] j  

75[ x ]} 
+~- 3_e._e.-+ (_xr.f._x)2_x-~(_xr._e._x)_e._x-~r3_ . e _ . e . x x  [4.2] 

Then, combining [4.1] and [4.2], we find the correct expression of v" to be used in boundary 
condition [2.4]. There remains now to compute the 0(e 2) term of the fluid velocity. The equation 
of the deformed surface of the capsule must be first determined to 0(e2), in order to calculate 

(2) 
the value of f appearing in [2.4]. Correspondingly: 

25_xT X { X T X_ 
r=(_A. _A)I/2= 1 + ~ - - 7 .  _e' +~2 Coe:e+--- '_ - r [(CI+C4)Sd(e'_ fl)+(C2+Cs)Sd(e_'_ _e)] r 

+ (C3 + C6)-7" Sdg_ee).  \ r3 ] + • _e . . . .  r _e" _e" r + O(E ) .  [4.3] 

(2) 
By comparing this expression with [2.3], the value of f follows readily. By combining [3.1], 
[3.3], [3.7], [3.10] and [4.3], it is possible to evaluate all the known quantities)appearing in the 
I.h.s. 0(e ~) bracket of [2.4]. In order to solve [2.4] for the unknown velocity _v, it is convenient 
to integrate the equation over a unit sphere and to make use of the orthogonality conditions. 
Correspondingly, if d/~s is the elementary solid angle 

[4.4] 
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1 fl-(1) Ov (2) Or 1 (I) ] (440 l~__55_xP"'~e(e:_e) 
dn = 294 / 

_/3365 1045 +~15 
\ 84 11~ A P ' )  Sd (9" e. e_) 

+ (209,~ + 276) 
48 [Sd (9" 9" e_)- Sd (9" e_ . 9)]. [4.51 

Similarly 

1 f r,2) ] [_v" = 1 dlI, = - ( 5 5 1 4 8  7~)[Sd(~_.f l_.e_)-Sd (_1). e • 1)_)] 

/1005 365 _,\ + ~--~ +-.~ ~g ) Sd (9" e_. e_). [4.6] 

(2) 
Consequently from [4.4] to [4.6], we obtain the following expression for _T, where the fractions 
have been evaluated with an absolute precision of 5 × 10 -4. 

(2) 
_T = ( - 14.966 + 27.976 ~') _e(_e: _e) + (918.155 - 46.652 

+ 130.952 P') Sd (9" _e. _e) - (106.250 + 79.167A) [Sd(~_. 9" e_) 
- Sd (9" e_. 9)]. [4.7] 

5. THE CONSTITUTIVE EQUATION 

As shown by Batcheior (1970) the bulk properties of a suspension are defined as averages of 
the corresponding local quantities over a representative volume Vj containing many particles 
but small with respect to the length scale of the flow. Consequently reverting to dimensional 
quantities the deviatoric bulk stress is expressed as 

Sd((a_)-2t~(e_))=-~ ~ f a Sd(q.n_x_-2#v_n_)dA, 
1 

where the brackets ( ) denote bulk quantities, and where the summation is taken over all the 
particles present in Vv The domain AI represents an arbitrary surface enclosing one particle. 
Then Batchelor showed that the overall contribution from the particles is contained in the 
stresslet term T: 

(a_)=-pl_ + 2u ((_e)-2-~ ~/ VpT) , [5.11 

where Vp is the volume of one particle. In the case when all the capsules are identical, the 
equation involves the volume fraction ~b of particles: 

(~_)=-p! + 2~ ((e_)-~cbT). [5.2] 

Then, replacing T by its expansion given by [3.3], [3.7] and [4.7], the constitutive equation of 
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the suspension becomes: 

503 

5 [26.786 (e. e ) -  (_e. f~)] ~=-p_/+2tt_e+2tt4~ ~ e_ _ S d  _ 47.500 S d  _ 
Izro 

2 

- \~-~] [( - 22.449 + 41.964 ~')_e(_e : _e) 

+ (1377.232 - 69.978A + 196.429 ~ ' )  Sd ( l )_ .  e_. e_) 

(159.375 + 118.750A) [ S d ( ~ _ .  9 "  _e) - S d  ( 9  . . e .  _fl)]] + 0(~3G) / + 0(~tG~2) • 
J 

[5.31 

The brackets have been dropped to simplify the notation, but it is to be understood that [5.3] is 
expressed in terms of bulk quantities. The above constitutive equation should be compared to 
the one obtained for dilute emulsions to an equivalent order of approximation by Barthes-Biesel 
& Acrivos (1973). Their equation is more general since it applies to time dependent flows and 
involves the Jaumann derivative of the strain rate. However, for steady flows, this derivative 
reduces to the symmetric deviator. 

~e  
---:- = e . [ l  - ~ l .  e = 2 S d  (e  . l l ) ,  [5.4] 
~t  . . . . . .  

and consequently, it appears that the suspension of microcapsules and the emulsion have the 
same general viscoelastic behavior of the type suggested by Rivlin & Ericksen (1955). 

The differences between the capsules and the droplets lie in the numerical values of the 
coefficients and in their dependency on the parameters of the problem. In particular the higher 
order coefficients are linear functions of the viscosity ratio ,/ for capsules, whereas they are 
rational fractions of A for drops. It would seem that this difference is due mainly to the 
behaviour of the membrane interface as compared to the fluid one, an~i also to the mecanisms 
of shear stress transmission from the exterior to the interior fluid. Final|y, [5.3] involves still 
another parameter ~ '  which is linked to the non-linear properties of the membrane material. 
Owing to the perturbation procedure, ~ '  enters the problem only to 0(~z), and consequently, its 
influence on the behaviour of the suspension is somewhat damped. 

Similarly, [5.3] is of the same type as the constitutive equation derived by Goddard & Miller 
(1967) for a dilute suspension of elastic spheres, and recomputed for weakly time dependent 
flows by Barthes-Biesel & Acrivos (1973). Again, the dependency of the coefficients of the 
equation on the microrheological parameters is different as should be expected. 

The analogies between the constitutive equations obtained for liquid droplets, elastic 
spheres and microcapsules suspensions should not be surprising since the analysis which lead to 
these stress-strain relations was essentially the same for the three types of particles. Con- 
sequently, [5.3] which was derived for steady flows, can be generalized to weakly time 
dependent flows, such that (~e_]~ t )  is of order 1. Indeed, in that case [5.3] can only be of the 
Rivlin-Ericksen type, then the occurrence of the vorticity tensor _[1 is linked in the generalized 
equation to Jaumann time derivatives. For example, in view of [5.4], 2 S d ( e _ .  ~_) is the 
degenerate form of ( ~ e _ / ~ t ) .  Similarly, Sd([l_ . e . e_) and 2 [Sd([l_ . ~_ . e_) - Sd(l)_ . e_ . l))], can be 
considered as steady state representations of respectively -Sd((~e_/~t). e_) and (~2_e/~t2). 
Consequently, the stress-strain relation of the capsule suspension, extended to weakly time 
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dependent flows becomes: 

q = - p_! + 2# _e + 2/z~b ~ e + ~-~ 26.786 Sd(e. e_) - 23.750 De 

f 
1( - 22.449 + 41.964 ~") _e (_e :_e) - (1377.232 - 69.978A 
i_ 

~2 e 
+196.429~')Sd(-~t'e)-(79.688+59.375)t)-~+O(e3G)]}+O(l~G~2). 

[5.5] 

The validity of this equation is limited to slowly varying flows and to small values of the 
parameter e, or correspondingly for a given system, to small values of the shear rate. 
Furthermore, ,~ should be 0(1), since the coefficient of the 0(E:) term is a linear function of the 
viscosity ratio. It should be noted that a similar restriction applies for dilute emulsions as well, 
since when ,~ is large, the analysis becomes somewhat different. 

Two easily measurable quantities are the shear viscosity and the normal stress difference. 
Equation [5.3], when evaluated for the simple shear flow [3.5], yields the following value for the 
apparent shear viscosity p-a: 

/z~ /z{l 5 i~Gro 2 ~., 59.375A)+0(E3)]} = + ~b[~-(---Eh--) (68.463+20.982 + [5.6] 

This model predicts that the suspension exhibits a shear thinning behaviour as was observed 
experimentally by Bredimas (1980) for interfacially polymerized emulsions. The advantage of 
[5.6] is that it shows explicitely how the apparent viscosity depends on the relevant micro- 
scopical parameters of the suspension, namely ~, ro, Eh and 4'. 

Similarly the normal stress difference may be computed for simple shear flow 

trll-  #33 = 37.143/zG~be + 0(e3Gth, &2). [5.7] 

There is no presently available experimental measure of this quantity which can be used to 
check at least qualitatively the prediction of the model. 

In conclusion, a dilute suspension of microcapsules has a specific rheological behaviour, 
which nevertheless presents some similarities with that of emulsions or that of suspensions of 
elastic spheres. For weakly time dependent flows, the stress-strain relation is of the Rivlin- 
Ericksen type, where the coefficients depend on the physical properties of the suspended 
capsules. The present model can be used, within its range of validity, to interpret experimental 
macroscopic measurements in terms of the microrheological parameters of the suspension. 
Such a study is feasible for interfacially polymerized emulsions, and its results will be published 
in a forthcoming paper. 
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